Für MongoDB 3.6 und neuer:
Der $expr
Der Operator ermöglicht die Verwendung von Aggregationsausdrücken innerhalb der Abfragesprache, sodass Sie die Verwendung von $dateToString
Operator, um das Datumsfeld umzuwandeln:
db.test.find({
"$expr": {
"$ne": [
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } },
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
]
}
})
oder mithilfe des Aggregationsframeworks mit $ übereinstimmen
Leitung
db.test.aggregate([
{ "$match": {
"$expr": {
"$ne": [
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } },
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
]
}
} }
])
Für MongoDB 3.0+:
Sie können das Aggregations-Framework auch mit verwenden $redact
Pipeline-Operator, mit dem Sie die logische Bedingung mit dem $cond
-Operator und verwendet die speziellen Operationen $$ BEHALTEN
um das Dokument zu "behalten", wo die logische Bedingung wahr ist, oder $$PRUNE
um das Dokument zu "entfernen", bei dem die Bedingung falsch war.
Erwägen Sie, die folgende Aggregatoperation auszuführen, die das obige Konzept demonstriert:
db.test.aggregate([
{
"$redact": {
"$cond": [
{
"$ne": [
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } },
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
]
},
"$$KEEP",
"$$PRUNE"
]
}
}
])
Dieser Vorgang ähnelt einem <-Code>$projekt
Pipeline, die die Felder in der Sammlung auswählt und ein neues Feld erstellt, das das Ergebnis der logischen Bedingungsabfrage enthält, und dann ein nachfolgendes $match
, außer dass $redact
verwendet eine einzelne Pipelinestufe, die effizienter ist:
db.test.aggregate([
{
"$project": {
"created": 1,
"last_active": 1,
"sameDay": {
"$cond": [
{
"$eq": [
{"$substr" : ["$last_active",0, 10]},
{"$substr" : ["$created",0, 10]}
]
}, true, false
]
}
}
},
{ "$match": { "sameDay": false } }
])
0r
db.test.aggregate([
{
"$project": {
"created": 1,
"last_active": 1,
"sameDay": {
"$cond": [
{
"$eq": [
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } },
{ "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
]
}, true, false
]
}
}
},
{ "$match": { "sameDay": false } }
])
Ein anderer Ansatz wäre die Verwendung von $where
Operator in Ihrem find()
Beachten Sie jedoch, dass die Abfrage ziemlich langsam sein wird, da $gt
, $in
):
db.test.find({
"$where": function() {
return this.created.getDate() !== this.last_active.getDate()
}
});
oder kompakter:
db.test.find({ "$where": "this.created.getDate() !== this.last_active.getDate()" });
Mit der Eingabe:
/* 0 */
{
"_id" : 1,
"created" : ISODate("2014-12-19T06:01:17.171Z"),
"last_active" : ISODate("2014-12-21T15:38:13.842Z")
}
/* 1 */
{
"_id" : 2,
"created" : ISODate("2015-07-06T12:17:32.084Z"),
"last_active" : ISODate("2015-07-06T18:07:08.145Z")
}
/* 2 */
{
"_id" : 3,
"created" : ISODate("2015-07-06T06:01:17.171Z"),
"last_active" : ISODate("2015-07-07T10:04:30.921Z")
}
/* 3 */
{
"_id" : 4,
"created" : ISODate("2015-07-06T06:01:17.171Z"),
"last_active" : ISODate("2015-07-06T09:47:44.186Z")
}
/* 4 */
{
"_id" : 5,
"created" : ISODate("2013-12-19T06:01:17.171Z"),
"last_active" : ISODate("2014-01-20T13:21:37.427Z")
}
Die Aggregation gibt zurück:
/* 0 */
{
"result" : [
{
"_id" : 1,
"created" : ISODate("2014-12-19T06:01:17.171Z"),
"last_active" : ISODate("2014-12-21T15:38:13.842Z"),
"sameDay" : false
},
{
"_id" : 3,
"created" : ISODate("2015-07-06T06:01:17.171Z"),
"last_active" : ISODate("2015-07-07T10:04:30.921Z"),
"sameDay" : false
},
{
"_id" : 5,
"created" : ISODate("2013-12-19T06:01:17.171Z"),
"last_active" : ISODate("2014-01-20T13:21:37.427Z"),
"sameDay" : false
}
],
"ok" : 1
}