MongoDB
 sql >> Datenbank >  >> NoSQL >> MongoDB

Vergleichen Sie 2 Daten in der Mongo-Suchmethode

Für MongoDB 3.6 und neuer:

Der $expr Der Operator ermöglicht die Verwendung von Aggregationsausdrücken innerhalb der Abfragesprache, sodass Sie die Verwendung von $dateToString Operator, um das Datumsfeld umzuwandeln:

db.test.find({ 
    "$expr": { 
        "$ne": [ 
             { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
             { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
        ] 
    } 
})

oder mithilfe des Aggregationsframeworks mit $ übereinstimmen Leitung

db.test.aggregate([
    { "$match": { 
        "$expr": { 
            "$ne": [ 
                { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
                { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
            ] 
        } 
    } }
])

Für MongoDB 3.0+:

Sie können das Aggregations-Framework auch mit verwenden $redact Pipeline-Operator, mit dem Sie die logische Bedingung mit dem $cond -Operator und verwendet die speziellen Operationen $$ BEHALTEN um das Dokument zu "behalten", wo die logische Bedingung wahr ist, oder $$PRUNE um das Dokument zu "entfernen", bei dem die Bedingung falsch war.

Erwägen Sie, die folgende Aggregatoperation auszuführen, die das obige Konzept demonstriert:

db.test.aggregate([
    {
        "$redact": {
            "$cond": [
                { 
                    "$ne": [ 
                        { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
                        { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
                    ] 
                },
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    }
])

Dieser Vorgang ähnelt einem <-Code>$projekt Pipeline, die die Felder in der Sammlung auswählt und ein neues Feld erstellt, das das Ergebnis der logischen Bedingungsabfrage enthält, und dann ein nachfolgendes $match , außer dass $redact verwendet eine einzelne Pipelinestufe, die effizienter ist:

db.test.aggregate([
    {
        "$project": { 
            "created": 1, 
            "last_active": 1,
            "sameDay": { 
                "$cond": [ 
                    { 
                        "$eq": [ 
                            {"$substr" : ["$last_active",0, 10]}, 
                            {"$substr" : ["$created",0, 10]}
                        ] 
                    }, true, false 
                ]
            } 
        } 
    },
    { "$match": { "sameDay": false } }
])

0r

db.test.aggregate([
    {
        "$project": { 
            "created": 1, 
            "last_active": 1,
            "sameDay": { 
                "$cond": [ 
                    { 
                        "$eq": [ 
                            { "$dateToString": { "format": "%Y-%m-%d", "date": "$created" } }, 
                            { "$dateToString": { "format": "%Y-%m-%d", "date": "$last_active" } }
                        ] 
                    }, true, false 
                ]
            } 
        } 
    },
    { "$match": { "sameDay": false } }
])

Ein anderer Ansatz wäre die Verwendung von $where Operator in Ihrem find() Beachten Sie jedoch, dass die Abfrage ziemlich langsam sein wird, da $wo allein erfordert einen Tabellenscan und die Datenbank führt den JavaScript-Ausdruck oder die JavaScript-Funktion für jedes Dokument in der Sammlung aus, also kombinieren Sie sie mit indizierten Abfragen, wenn Sie können, da sich die Abfrageleistung auch verbessert, wenn Sie sie mit den Standard-MongoDB-Operatoren ausdrücken (z. B. $gt , $in ):

db.test.find({ 
   "$where": function() { 
       return this.created.getDate() !== this.last_active.getDate() 
   } 
});

oder kompakter:

db.test.find({ "$where": "this.created.getDate() !== this.last_active.getDate()" });

Mit der Eingabe:

/* 0 */
{
    "_id" : 1,
    "created" : ISODate("2014-12-19T06:01:17.171Z"),
    "last_active" : ISODate("2014-12-21T15:38:13.842Z")
}

/* 1 */
{
    "_id" : 2,
    "created" : ISODate("2015-07-06T12:17:32.084Z"),
    "last_active" : ISODate("2015-07-06T18:07:08.145Z")
}

/* 2 */
{
    "_id" : 3,
    "created" : ISODate("2015-07-06T06:01:17.171Z"),
    "last_active" : ISODate("2015-07-07T10:04:30.921Z")
}

/* 3 */
{
    "_id" : 4,
    "created" : ISODate("2015-07-06T06:01:17.171Z"),
    "last_active" : ISODate("2015-07-06T09:47:44.186Z")
}

/* 4 */
{
    "_id" : 5,
    "created" : ISODate("2013-12-19T06:01:17.171Z"),
    "last_active" : ISODate("2014-01-20T13:21:37.427Z")
}

Die Aggregation gibt zurück:

/* 0 */
{
    "result" : [ 
        {
            "_id" : 1,
            "created" : ISODate("2014-12-19T06:01:17.171Z"),
            "last_active" : ISODate("2014-12-21T15:38:13.842Z"),
            "sameDay" : false
        }, 
        {
            "_id" : 3,
            "created" : ISODate("2015-07-06T06:01:17.171Z"),
            "last_active" : ISODate("2015-07-07T10:04:30.921Z"),
            "sameDay" : false
        }, 
        {
            "_id" : 5,
            "created" : ISODate("2013-12-19T06:01:17.171Z"),
            "last_active" : ISODate("2014-01-20T13:21:37.427Z"),
            "sameDay" : false
        }
    ],
    "ok" : 1
}