Berechnen Sie einen Begrenzungsrahmen, um eine Teilmenge der Zeilen in der WHERE-Klausel Ihrer SQL-Abfrage auszuwählen, sodass Sie die teure Entfernungsberechnung nur für diese Teilmenge von Zeilen ausführen und nicht für die gesamten 200.000 Datensätze in Ihrer Tabelle. Die Methode wird in diesem Artikel über Movable Type beschrieben (mit PHP-Codebeispielen). Dann können Sie die Haversine-Berechnung in Ihre Abfrage für diese Teilmenge aufnehmen, um die tatsächlichen Entfernungen zu berechnen, und an diesem Punkt die HAVING-Klausel berücksichtigen.
Es ist der Begrenzungsrahmen, der Ihrer Leistung zugute kommt, da er bedeutet, dass Sie die teure Entfernungsberechnung nur für eine kleine Teilmenge Ihrer Daten durchführen. Dies ist praktisch die gleiche Methode, die Patrick vorgeschlagen hat, aber der Movable Type-Link enthält ausführliche Erläuterungen der Methode sowie PHP-Code, den Sie zum Erstellen des Begrenzungsrahmens und Ihrer SQL-Abfrage verwenden können.
BEARBEITEN
Wenn Sie denken, dass Haversine nicht genau genug ist, gibt es auch die Vincenty-Formel.
// Vincenty formula to calculate great circle distance between 2 locations expressed as Lat/Long in KM
function VincentyDistance($lat1,$lat2,$lon1,$lon2){
$a = 6378137 - 21 * sin($lat1);
$b = 6356752.3142;
$f = 1/298.257223563;
$p1_lat = $lat1/57.29577951;
$p2_lat = $lat2/57.29577951;
$p1_lon = $lon1/57.29577951;
$p2_lon = $lon2/57.29577951;
$L = $p2_lon - $p1_lon;
$U1 = atan((1-$f) * tan($p1_lat));
$U2 = atan((1-$f) * tan($p2_lat));
$sinU1 = sin($U1);
$cosU1 = cos($U1);
$sinU2 = sin($U2);
$cosU2 = cos($U2);
$lambda = $L;
$lambdaP = 2*M_PI;
$iterLimit = 20;
while(abs($lambda-$lambdaP) > 1e-12 && $iterLimit>0) {
$sinLambda = sin($lambda);
$cosLambda = cos($lambda);
$sinSigma = sqrt(($cosU2*$sinLambda) * ($cosU2*$sinLambda) + ($cosU1*$sinU2-$sinU1*$cosU2*$cosLambda) * ($cosU1*$sinU2-$sinU1*$cosU2*$cosLambda));
//if ($sinSigma==0){return 0;} // co-incident points
$cosSigma = $sinU1*$sinU2 + $cosU1*$cosU2*$cosLambda;
$sigma = atan2($sinSigma, $cosSigma);
$alpha = asin($cosU1 * $cosU2 * $sinLambda / $sinSigma);
$cosSqAlpha = cos($alpha) * cos($alpha);
$cos2SigmaM = $cosSigma - 2*$sinU1*$sinU2/$cosSqAlpha;
$C = $f/16*$cosSqAlpha*(4+$f*(4-3*$cosSqAlpha));
$lambdaP = $lambda;
$lambda = $L + (1-$C) * $f * sin($alpha) * ($sigma + $C*$sinSigma*($cos2SigmaM+$C*$cosSigma*(-1+2*$cos2SigmaM*$cos2SigmaM)));
}
$uSq = $cosSqAlpha*($a*$a-$b*$b)/($b*$b);
$A = 1 + $uSq/16384*(4096+$uSq*(-768+$uSq*(320-175*$uSq)));
$B = $uSq/1024 * (256+$uSq*(-128+$uSq*(74-47*$uSq)));
$deltaSigma = $B*$sinSigma*($cos2SigmaM+$B/4*($cosSigma*(-1+2*$cos2SigmaM*$cos2SigmaM)- $B/6*$cos2SigmaM*(-3+4*$sinSigma*$sinSigma)*(-3+4*$cos2SigmaM*$cos2SigmaM)));
$s = $b*$A*($sigma-$deltaSigma);
return $s/1000;
}
echo VincentyDistance($lat1,$lat2,$lon1,$lon2);