MongoDB
 sql >> Datenbank >  >> NoSQL >> MongoDB

Mungo:wie man Aggregate verwendet und zusammenfindet

Verwenden Sie für MongoDB 3.6 und höher den $expr Operator, der die Verwendung von Aggregationsausdrücken innerhalb der Abfragesprache ermöglicht:

var followers_count = 30;
db.locations.find({
   "$expr": { 
       "$and": [
           { "$eq": ["$name", "development"] },
           { "$gte": [{ "$size": "$followers" }, followers_count ]}
       ]
    }
});

Für nicht kompatible Versionen können Sie sowohl den $match und $redact Pipelines, um Ihre Sammlung abzufragen. Zum Beispiel, wenn Sie die locations abfragen möchten Sammlung, wobei der Name 'Entwicklung' und followers_count ist größer als 30 ist, führen Sie die folgende Aggregatoperation aus:

const followers_count = 30;
Locations.aggregate([
    { "$match": { "name": "development" } },
    {
        "$redact": {
            "$cond": [
                { "$gte": [ { "$size": "$followers" }, followers_count ] },
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    }
]).exec((err, locations) => {
    if (err) throw err;
    console.log(locations);
})

oder innerhalb einer einzelnen Pipeline als

Locations.aggregate([
    {
        "$redact": {
            "$cond": [
                { 
                    "$and": [
                        { "$eq": ["$name", "development"] },
                        { "$gte": [ { "$size": "$followers" }, followers_count ] }
                     ]
                },
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    }
]).exec((err, locations) => {
    if (err) throw err;
    console.log(locations);
})

Das Obige gibt die Standorte nur mit der _id zurück Referenzen von den Benutzern. Um die Benutzerdokumente als Mittel zum „Auffüllen“ des Follower-Arrays zurückzugeben, können Sie dann den $lookup Pipeline.

Wenn die zugrunde liegende Mongo-Serverversion 3.4 oder höher ist, können Sie die Pipeline als

ausführen
let followers_count = 30;
Locations.aggregate([
    { "$match": { "name": "development" } },
    {
        "$redact": {
            "$cond": [
                { "$gte": [ { "$size": "$followers" }, followers_count ] },
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    },
    {
        "$lookup": {
            "from": "users",
            "localField": "followers",
            "foreignField": "_id",
            "as": "followers"
        }
    }
]).exec((err, locations) => {
    if (err) throw err;
    console.log(locations);
})

andernfalls müssten Sie $unwind das followers-Array, bevor Sie $lookup und dann mit $group Pipeline danach:

let followers_count = 30;
Locations.aggregate([
    { "$match": { "name": "development" } },
    {
        "$redact": {
            "$cond": [
                { "$gte": [ { "$size": "$followers" }, followers_count ] },
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    },
    { "$unwind": "$followers" },
    {
        "$lookup": {
            "from": "users",
            "localField": "followers",
            "foreignField": "_id",
            "as": "follower"
        }
    },
    { "$unwind": "$follower" },
    {
        "$group": {
            "_id": "$_id",
            "created": { "$first": "$created" },
            "name": { "$first": "$name" },
            "followers": { "$push": "$follower" }
        }
    }
]).exec((err, locations) => {
    if (err) throw err;
    console.log(locations);
})