MongoDB
 sql >> Datenbank >  >> NoSQL >> MongoDB

Führen Sie den Mahout RowSimilarity Recommender für MongoDB-Daten aus

Unten ist die Antwort:

import org.apache.hadoop.conf.Configuration
import org.apache.mahout.math.cf.SimilarityAnalysis
import org.apache.mahout.math.indexeddataset.Schema
import org.apache.mahout.sparkbindings
import org.apache.mahout.sparkbindings.indexeddataset.IndexedDatasetSpark
import org.apache.spark.rdd.RDD
import org.bson.BSONObject
import com.mongodb.hadoop.MongoInputFormat


object SparkExample extends App {
  implicit val mc = sparkbindings.mahoutSparkContext(masterUrl = "local", appName = "RowSimilarity")
  val mongoConfig = new Configuration()
  mongoConfig.set("mongo.input.uri", "mongodb://hostname:27017/db.collection")

  val documents: RDD[(Object, BSONObject)] = mc.newAPIHadoopRDD(
    mongoConfig,
    classOf[MongoInputFormat],
    classOf[Object],
    classOf[BSONObject]
  )

  val documents_Array: RDD[(String, Array[String])] = documents.map(
    doc1 => (
      doc1._2.get("product_id").toString(),
      doc1._2.get("product_attribute_value").toString().replace("[ \"", "").replace("\"]", "").split("\" , \"").map(value => value.toLowerCase.replace(" ", "-").mkString(" "))
    )
  )

  val new_doc: RDD[(String, String)] = documents_Array.flatMapValues(x => x)
  val myIDs = IndexedDatasetSpark(new_doc)(mc)

  val readWriteSchema = new Schema(
    "rowKeyDelim" -> "\t",
    "columnIdStrengthDelim" -> ":",
    "omitScore" -> false,
    "elementDelim" -> " "
  )
  SimilarityAnalysis.rowSimilarityIDS(myIDs).dfsWrite("hdfs://hadoop:9000/mongo-hadoop-rowsimilarity", readWriteSchema)(mc)

}

build.sbt:

name := "scala-mongo"
version := "1.0"
scalaVersion := "2.10.6"
libraryDependencies += "org.mongodb" %% "casbah" % "3.1.1"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.6.1"
libraryDependencies += "org.mongodb.mongo-hadoop" % "mongo-hadoop-core" % "1.4.2"

libraryDependencies ++= Seq(
  "org.apache.hadoop" % "hadoop-client" % "2.6.0" exclude("javax.servlet", "servlet-api") exclude ("com.sun.jmx", "jmxri") exclude ("com.sun.jdmk", "jmxtools") exclude ("javax.jms", "jms") exclude ("org.slf4j", "slf4j-log4j12") exclude("hsqldb","hsqldb"),
  "org.scalatest" % "scalatest_2.10" % "1.9.2" % "test"
)
libraryDependencies += "org.apache.mahout" % "mahout-math-scala_2.10" % "0.11.2"
libraryDependencies += "org.apache.mahout" % "mahout-spark_2.10" % "0.11.2"
libraryDependencies += "org.apache.mahout" % "mahout-math" % "0.11.2"
libraryDependencies += "org.apache.mahout" % "mahout-hdfs" % "0.11.2"

resolvers += "typesafe repo" at " http://repo.typesafe.com/typesafe/releases/"
resolvers += Resolver.mavenLocal

Ich habe mongo-hadoop verwendet um Daten von Mongo zu erhalten und zu verwenden. Da meine Daten ein Array hatten, musste ich flatMapValues ​​verwenden, um sie zu glätten und dann für eine korrekte Ausgabe an IDS weiterzugeben.

PS:Ich habe die Antwort hier gepostet und nicht die verknüpfte Frage denn diese Fragen und Antworten decken den gesamten Umfang der Erfassung und Verarbeitung von Daten ab.