Sqlserver
 sql >> Datenbank >  >> RDS >> Sqlserver

Gibt es eine lineare Regressionsfunktion in SQL Server?

Meines Wissens nach gibt es keine. Eine zu schreiben ist jedoch ziemlich einfach. Das Folgende gibt Ihnen das konstante Alpha und das Steigungs-Beta für y =Alpha + Beta * x + Epsilon:

-- test data (GroupIDs 1, 2 normal regressions, 3, 4 = no variance)
WITH some_table(GroupID, x, y) AS
(       SELECT 1,  1,  1    UNION SELECT 1,  2,  2    UNION SELECT 1,  3,  1.3  
  UNION SELECT 1,  4,  3.75 UNION SELECT 1,  5,  2.25 UNION SELECT 2, 95, 85    
  UNION SELECT 2, 85, 95    UNION SELECT 2, 80, 70    UNION SELECT 2, 70, 65    
  UNION SELECT 2, 60, 70    UNION SELECT 3,  1,  2    UNION SELECT 3,  1, 3
  UNION SELECT 4,  1,  2    UNION SELECT 4,  2,  2),
 -- linear regression query
/*WITH*/ mean_estimates AS
(   SELECT GroupID
          ,AVG(x * 1.)                                             AS xmean
          ,AVG(y * 1.)                                             AS ymean
    FROM some_table
    GROUP BY GroupID
),
stdev_estimates AS
(   SELECT pd.GroupID
          -- T-SQL STDEV() implementation is not numerically stable
          ,CASE      SUM(SQUARE(x - xmean)) WHEN 0 THEN 1 
           ELSE SQRT(SUM(SQUARE(x - xmean)) / (COUNT(*) - 1)) END AS xstdev
          ,     SQRT(SUM(SQUARE(y - ymean)) / (COUNT(*) - 1))     AS ystdev
    FROM some_table pd
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
    GROUP BY pd.GroupID, pm.xmean, pm.ymean
),
standardized_data AS                   -- increases numerical stability
(   SELECT pd.GroupID
          ,(x - xmean) / xstdev                                    AS xstd
          ,CASE ystdev WHEN 0 THEN 0 ELSE (y - ymean) / ystdev END AS ystd
    FROM some_table pd
    INNER JOIN stdev_estimates ps ON ps.GroupID = pd.GroupID
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
),
standardized_beta_estimates AS
(   SELECT GroupID
          ,CASE WHEN SUM(xstd * xstd) = 0 THEN 0
                ELSE SUM(xstd * ystd) / (COUNT(*) - 1) END         AS betastd
    FROM standardized_data pd
    GROUP BY GroupID
)
SELECT pb.GroupID
      ,ymean - xmean * betastd * ystdev / xstdev                   AS Alpha
      ,betastd * ystdev / xstdev                                   AS Beta
FROM standardized_beta_estimates pb
INNER JOIN stdev_estimates ps ON ps.GroupID = pb.GroupID
INNER JOIN mean_estimates  pm ON pm.GroupID = pb.GroupID

Hier GroupID wird verwendet, um zu zeigen, wie Sie in Ihrer Quelldatentabelle nach einem bestimmten Wert gruppieren. Wenn Sie nur die Statistiken für alle Daten in der Tabelle (nicht für bestimmte Untergruppen) wünschen, können Sie sie und die Verknüpfungen löschen. Ich habe den WITH verwendet Erklärung zur Verdeutlichung. Alternativ können Sie stattdessen Unterabfragen verwenden. Bitte achten Sie auf die Genauigkeit des in Ihren Tabellen verwendeten Datentyps, da sich die numerische Stabilität schnell verschlechtern kann, wenn die Genauigkeit im Verhältnis zu Ihren Daten nicht hoch genug ist.

BEARBEITEN: (als Antwort auf Peters Frage nach zusätzlichen Statistiken wie R2 in den Kommentaren)

Mit der gleichen Technik können Sie ganz einfach zusätzliche Statistiken berechnen. Hier ist eine Version mit R2, Korrelation und Stichprobenkovarianz:

-- test data (GroupIDs 1, 2 normal regressions, 3, 4 = no variance)
WITH some_table(GroupID, x, y) AS
(       SELECT 1,  1,  1    UNION SELECT 1,  2,  2    UNION SELECT 1,  3,  1.3  
  UNION SELECT 1,  4,  3.75 UNION SELECT 1,  5,  2.25 UNION SELECT 2, 95, 85    
  UNION SELECT 2, 85, 95    UNION SELECT 2, 80, 70    UNION SELECT 2, 70, 65    
  UNION SELECT 2, 60, 70    UNION SELECT 3,  1,  2    UNION SELECT 3,  1, 3
  UNION SELECT 4,  1,  2    UNION SELECT 4,  2,  2),
 -- linear regression query
/*WITH*/ mean_estimates AS
(   SELECT GroupID
          ,AVG(x * 1.)                                             AS xmean
          ,AVG(y * 1.)                                             AS ymean
    FROM some_table pd
    GROUP BY GroupID
),
stdev_estimates AS
(   SELECT pd.GroupID
          -- T-SQL STDEV() implementation is not numerically stable
          ,CASE      SUM(SQUARE(x - xmean)) WHEN 0 THEN 1 
           ELSE SQRT(SUM(SQUARE(x - xmean)) / (COUNT(*) - 1)) END AS xstdev
          ,     SQRT(SUM(SQUARE(y - ymean)) / (COUNT(*) - 1))     AS ystdev
    FROM some_table pd
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
    GROUP BY pd.GroupID, pm.xmean, pm.ymean
),
standardized_data AS                   -- increases numerical stability
(   SELECT pd.GroupID
          ,(x - xmean) / xstdev                                    AS xstd
          ,CASE ystdev WHEN 0 THEN 0 ELSE (y - ymean) / ystdev END AS ystd
    FROM some_table pd
    INNER JOIN stdev_estimates ps ON ps.GroupID = pd.GroupID
    INNER JOIN mean_estimates  pm ON pm.GroupID = pd.GroupID
),
standardized_beta_estimates AS
(   SELECT GroupID
          ,CASE WHEN SUM(xstd * xstd) = 0 THEN 0
                ELSE SUM(xstd * ystd) / (COUNT(*) - 1) END         AS betastd
    FROM standardized_data
    GROUP BY GroupID
)
SELECT pb.GroupID
      ,ymean - xmean * betastd * ystdev / xstdev                   AS Alpha
      ,betastd * ystdev / xstdev                                   AS Beta
      ,CASE ystdev WHEN 0 THEN 1 ELSE betastd * betastd END        AS R2
      ,betastd                                                     AS Correl
      ,betastd * xstdev * ystdev                                   AS Covar
FROM standardized_beta_estimates pb
INNER JOIN stdev_estimates ps ON ps.GroupID = pb.GroupID
INNER JOIN mean_estimates  pm ON pm.GroupID = pb.GroupID

BEARBEITEN 2 verbessert die numerische Stabilität durch Standardisierung von Daten (anstatt nur zu zentrieren) und durch Ersetzen von STDEV wegen numerische Stabilitätsprobleme . Für mich scheint die aktuelle Implementierung der beste Kompromiss zwischen Stabilität und Komplexität zu sein. Ich könnte die Stabilität verbessern, indem ich meine Standardabweichung durch einen numerisch stabilen Online-Algorithmus ersetze, aber dies würde die Implementierung erheblich erschweren (und verlangsamen). In ähnlicher Weise können Implementierungen, die z.B. Kahan(-Babuška-Neumaier) Kompensationen für die SUM und AVG scheinen in begrenzten Tests etwas besser zu funktionieren, machen die Abfrage jedoch viel komplexer. Und solange ich nicht weiß, wie T-SQL SUM implementiert und AVG (zB verwendet es möglicherweise bereits paarweise Summierung), kann ich nicht garantieren, dass solche Änderungen immer die Genauigkeit verbessern.