MongoDB
 sql >> Datenbank >  >> NoSQL >> MongoDB

Viele zu Viele mit Mongoose

Das Problem, das Sie derzeit haben, besteht darin, dass Sie die Referenz in einem Modell gespeichert haben, aber nicht in dem anderen. Es gibt keine „automatische referenzielle Integrität“ in MongoDB, und ein solches Konzept von „Beziehungen“ ist wirklich eine „manuelle“ Angelegenheit, und tatsächlich ist dies bei .populate() der Fall ist eigentlich eine ganze Reihe zusätzlicher Abfragen, um die referenzierten Informationen abzurufen. Keine "Magie" hier.

Der korrekte Umgang mit "viele zu vielen" hängt von drei Optionen ab:

Listing 1 - Arrays in beiden Dokumenten beibehalten

Nach Ihrem aktuellen Design speichern die Teile, die Sie vermissen, die auf "beiden" verwandten Elemente, auf die verwiesen wird. Für eine Auflistung zur Veranschaulichung:

const { Schema } = mongoose = require('mongoose');

mongoose.Promise = global.Promise;
mongoose.set('debug',true);
mongoose.set('useFindAndModify', false);
mongoose.set('useCreateIndex', true);

const uri = 'mongodb://localhost:27017/manydemo',
      options = { useNewUrlParser: true };

const itemSchema = new Schema({
  name: String,
  stores: [{ type: Schema.Types.ObjectId, ref: 'Store' }]
});

const storeSchema = new Schema({
  name: String,
  items: [{ type: Schema.Types.ObjectId, ref: 'Item' }]
});

const Item = mongoose.model('Item', itemSchema);
const Store = mongoose.model('Store', storeSchema);


const log = data => console.log(JSON.stringify(data,undefined,2))

(async function() {

  try {

    const conn = await mongoose.connect(uri,options);

    // Clean data
    await Promise.all(
      Object.entries(conn.models).map(([k,m]) => m.deleteMany() )
    );


    // Create some instances
    let [toothpaste,brush] = ['toothpaste','brush'].map(
      name => new Item({ name })
    );

    let [billsStore,tedsStore] = ['Bills','Teds'].map(
      name => new Store({ name })
    );

    // Add items to stores
    [billsStore,tedsStore].forEach( store => {
      store.items.push(toothpaste);   // add toothpaste to store
      toothpaste.stores.push(store);  // add store to toothpaste
    });

    // Brush is only in billsStore
    billsStore.items.push(brush);
    brush.stores.push(billsStore);

    // Save everything
    await Promise.all(
      [toothpaste,brush,billsStore,tedsStore].map( m => m.save() )
    );

    // Show stores
    let stores = await Store.find().populate('items','-stores');
    log(stores);

    // Show items
    let items = await Item.find().populate('stores','-items');
    log(items);

  } catch(e) {
    console.error(e);
  } finally {
    mongoose.disconnect();
  }

})();

Dadurch wird die "items"-Sammlung erstellt:

{
    "_id" : ObjectId("59ab96d9c079220dd8eec428"),
    "name" : "toothpaste",
    "stores" : [
            ObjectId("59ab96d9c079220dd8eec42a"),
            ObjectId("59ab96d9c079220dd8eec42b")
    ],
    "__v" : 0
}
{
    "_id" : ObjectId("59ab96d9c079220dd8eec429"),
    "name" : "brush",
    "stores" : [
            ObjectId("59ab96d9c079220dd8eec42a")
    ],
    "__v" : 0
}

Und die "Stores"-Sammlung:

{
    "_id" : ObjectId("59ab96d9c079220dd8eec42a"),
    "name" : "Bills",
    "items" : [
            ObjectId("59ab96d9c079220dd8eec428"),
            ObjectId("59ab96d9c079220dd8eec429")
    ],
    "__v" : 0
}
{
    "_id" : ObjectId("59ab96d9c079220dd8eec42b"),
    "name" : "Teds",
    "items" : [
            ObjectId("59ab96d9c079220dd8eec428")
    ],
    "__v" : 0
}

Und erzeugt eine Gesamtausgabe wie:

Mongoose: items.deleteMany({}, {})
Mongoose: stores.deleteMany({}, {})
Mongoose: items.insertOne({ name: 'toothpaste', _id: ObjectId("59ab96d9c079220dd8eec428"), stores: [ ObjectId("59ab96d9c079220dd8eec42a"), ObjectId("59ab96d9c079220dd8eec42b") ], __v: 0 })
Mongoose: items.insertOne({ name: 'brush', _id: ObjectId("59ab96d9c079220dd8eec429"), stores: [ ObjectId("59ab96d9c079220dd8eec42a") ], __v: 0 })
Mongoose: stores.insertOne({ name: 'Bills', _id: ObjectId("59ab96d9c079220dd8eec42a"), items: [ ObjectId("59ab96d9c079220dd8eec428"), ObjectId("59ab96d9c079220dd8eec429") ], __v: 0 })
Mongoose: stores.insertOne({ name: 'Teds', _id: ObjectId("59ab96d9c079220dd8eec42b"), items: [ ObjectId("59ab96d9c079220dd8eec428") ], __v: 0 })
Mongoose: stores.find({}, { fields: {} })
Mongoose: items.find({ _id: { '$in': [ ObjectId("59ab96d9c079220dd8eec428"), ObjectId("59ab96d9c079220dd8eec429") ] } }, { fields: { stores: 0 } })
[
  {
    "_id": "59ab96d9c079220dd8eec42a",
    "name": "Bills",
    "__v": 0,
    "items": [
      {
        "_id": "59ab96d9c079220dd8eec428",
        "name": "toothpaste",
        "__v": 0
      },
      {
        "_id": "59ab96d9c079220dd8eec429",
        "name": "brush",
        "__v": 0
      }
    ]
  },
  {
    "_id": "59ab96d9c079220dd8eec42b",
    "name": "Teds",
    "__v": 0,
    "items": [
      {
        "_id": "59ab96d9c079220dd8eec428",
        "name": "toothpaste",
        "__v": 0
      }
    ]
  }
]
Mongoose: items.find({}, { fields: {} })
Mongoose: stores.find({ _id: { '$in': [ ObjectId("59ab96d9c079220dd8eec42a"), ObjectId("59ab96d9c079220dd8eec42b") ] } }, { fields: { items: 0 } })
[
  {
    "_id": "59ab96d9c079220dd8eec428",
    "name": "toothpaste",
    "__v": 0,
    "stores": [
      {
        "_id": "59ab96d9c079220dd8eec42a",
        "name": "Bills",
        "__v": 0
      },
      {
        "_id": "59ab96d9c079220dd8eec42b",
        "name": "Teds",
        "__v": 0
      }
    ]
  },
  {
    "_id": "59ab96d9c079220dd8eec429",
    "name": "brush",
    "__v": 0,
    "stores": [
      {
        "_id": "59ab96d9c079220dd8eec42a",
        "name": "Bills",
        "__v": 0
      }
    ]
  }
]

Die wichtigsten Punkte sind, dass Sie die Referenzdaten tatsächlich zu jedem Dokument in jeder Sammlung hinzufügen, in der eine Beziehung besteht. Die vorhandenen "Arrays" werden hier verwendet, um diese Referenzen zu speichern und die Ergebnisse aus der zugehörigen Sammlung "nachzuschlagen" und sie durch die dort gespeicherten Objektdaten zu ersetzen.

Achten Sie auf Teile wie:

// Add items to stores
[billsStore,tedsStore].forEach( store => {
  store.items.push(toothpaste);   // add toothpaste to store
  toothpaste.stores.push(store);  // add store to toothpaste
});

Denn das bedeutet, dass wir nicht nur die toothpaste hinzufügen zu den "items" -Array in jedem Geschäft, aber wir fügen auch jedes "store" hinzu zu den "stores" Array der toothpaste Artikel. Dies geschieht, damit die Beziehungen funktionieren können, wenn sie aus beiden Richtungen abgefragt werden. Wenn Sie nur "Artikel aus Geschäften" wollten und nie "speichert von Artikeln", dann müssten Sie die Beziehungsdaten überhaupt nicht auf den "Artikel"-Einträgen speichern.

Listing 2 – Verwenden Sie Virtuals und eine Zwischensammlung

Dies ist im Wesentlichen die klassische „Viele-zu-Viele“-Beziehung. Anstatt die Beziehungen zwischen den beiden Sammlungen direkt zu definieren, gibt es eine andere Sammlung ( Tabelle ), die die Details darüber speichert, welcher Artikel zu welchem ​​Geschäft gehört.

Als vollständige Auflistung:

const { Schema } = mongoose = require('mongoose');

mongoose.Promise = global.Promise;
mongoose.set('debug',true);
mongoose.set('useFindAndModify', false);
mongoose.set('useCreateIndex', true);

const uri = 'mongodb://localhost:27017/manydemo',
      options = { useNewUrlParser: true };

const itemSchema = new Schema({
  name: String,
},{
 toJSON: { virtuals: true }
});

itemSchema.virtual('stores', {
  ref: 'StoreItem',
  localField: '_id',
  foreignField: 'itemId'
});

const storeSchema = new Schema({
  name: String,
},{
 toJSON: { virtuals: true }
});

storeSchema.virtual('items', {
  ref: 'StoreItem',
  localField: '_id',
  foreignField: 'storeId'
});

const storeItemSchema = new Schema({
  storeId: { type: Schema.Types.ObjectId, ref: 'Store', required: true },
  itemId: { type: Schema.Types.ObjectId, ref: 'Item', required: true }
});

const Item = mongoose.model('Item', itemSchema);
const Store = mongoose.model('Store', storeSchema);
const StoreItem = mongoose.model('StoreItem', storeItemSchema);

const log = data => console.log(JSON.stringify(data,undefined,2));

(async function() {

  try {

    const conn = await mongoose.connect(uri,options);

    // Clean data
    await Promise.all(
      Object.entries(conn.models).map(([k,m]) => m.deleteMany() )
    );

    // Create some instances
    let [toothpaste,brush] = await Item.insertMany(
      ['toothpaste','brush'].map( name => ({ name }) )
    );
    let [billsStore,tedsStore] = await Store.insertMany(
      ['Bills','Teds'].map( name => ({ name }) )
    );

    // Add toothpaste to both stores
    for( let store of [billsStore,tedsStore] ) {
      await StoreItem.update(
        { storeId: store._id, itemId: toothpaste._id },
        { },
        { 'upsert': true }
      );
    }

    // Add brush to billsStore
    await StoreItem.update(
      { storeId: billsStore._id, itemId: brush._id },
      {},
      { 'upsert': true }
    );

    // Show stores
    let stores = await Store.find().populate({
      path: 'items',
      populate: { path: 'itemId' }
    });
    log(stores);

    // Show Items
    let items = await Item.find().populate({
      path: 'stores',
      populate: { path: 'storeId' }
    });
    log(items);


  } catch(e) {
    console.error(e);
  } finally {
    mongoose.disconnect();
  }

})();

Die Beziehungen befinden sich jetzt in einer eigenen Sammlung, sodass die Daten jetzt anders angezeigt werden, für "Elemente":

{
    "_id" : ObjectId("59ab996166d5cc0e0d164d74"),
    "__v" : 0,
    "name" : "toothpaste"
}
{
    "_id" : ObjectId("59ab996166d5cc0e0d164d75"),
    "__v" : 0,
    "name" : "brush"
}

Und "speichert":

{
    "_id" : ObjectId("59ab996166d5cc0e0d164d76"),
    "__v" : 0,
    "name" : "Bills"
}
{
    "_id" : ObjectId("59ab996166d5cc0e0d164d77"),
    "__v" : 0,
    "name" : "Teds"
}

Und nun zu "storeitems", die die Relationen abbilden:

{
    "_id" : ObjectId("59ab996179e41cc54405b72b"),
    "itemId" : ObjectId("59ab996166d5cc0e0d164d74"),
    "storeId" : ObjectId("59ab996166d5cc0e0d164d76"),
    "__v" : 0
}
{
    "_id" : ObjectId("59ab996179e41cc54405b72d"),
    "itemId" : ObjectId("59ab996166d5cc0e0d164d74"),
    "storeId" : ObjectId("59ab996166d5cc0e0d164d77"),
    "__v" : 0
}
{
    "_id" : ObjectId("59ab996179e41cc54405b72f"),
    "itemId" : ObjectId("59ab996166d5cc0e0d164d75"),
    "storeId" : ObjectId("59ab996166d5cc0e0d164d76"),
    "__v" : 0
}

Mit voller Ausgabe wie:

Mongoose: items.deleteMany({}, {})
Mongoose: stores.deleteMany({}, {})
Mongoose: storeitems.deleteMany({}, {})
Mongoose: items.insertMany([ { __v: 0, name: 'toothpaste', _id: 59ab996166d5cc0e0d164d74 }, { __v: 0, name: 'brush', _id: 59ab996166d5cc0e0d164d75 } ])
Mongoose: stores.insertMany([ { __v: 0, name: 'Bills', _id: 59ab996166d5cc0e0d164d76 }, { __v: 0, name: 'Teds', _id: 59ab996166d5cc0e0d164d77 } ])
Mongoose: storeitems.update({ itemId: ObjectId("59ab996166d5cc0e0d164d74"), storeId: ObjectId("59ab996166d5cc0e0d164d76") }, { '$setOnInsert': { __v: 0 } }, { upsert: true })
Mongoose: storeitems.update({ itemId: ObjectId("59ab996166d5cc0e0d164d74"), storeId: ObjectId("59ab996166d5cc0e0d164d77") }, { '$setOnInsert': { __v: 0 } }, { upsert: true })
Mongoose: storeitems.update({ itemId: ObjectId("59ab996166d5cc0e0d164d75"), storeId: ObjectId("59ab996166d5cc0e0d164d76") }, { '$setOnInsert': { __v: 0 } }, { upsert: true })
Mongoose: stores.find({}, { fields: {} })
Mongoose: storeitems.find({ storeId: { '$in': [ ObjectId("59ab996166d5cc0e0d164d76"), ObjectId("59ab996166d5cc0e0d164d77") ] } }, { fields: {} })
Mongoose: items.find({ _id: { '$in': [ ObjectId("59ab996166d5cc0e0d164d74"), ObjectId("59ab996166d5cc0e0d164d75") ] } }, { fields: {} })
[
  {
    "_id": "59ab996166d5cc0e0d164d76",
    "__v": 0,
    "name": "Bills",
    "items": [
      {
        "_id": "59ab996179e41cc54405b72b",
        "itemId": {
          "_id": "59ab996166d5cc0e0d164d74",
          "__v": 0,
          "name": "toothpaste",
          "stores": null,
          "id": "59ab996166d5cc0e0d164d74"
        },
        "storeId": "59ab996166d5cc0e0d164d76",
        "__v": 0
      },
      {
        "_id": "59ab996179e41cc54405b72f",
        "itemId": {
          "_id": "59ab996166d5cc0e0d164d75",
          "__v": 0,
          "name": "brush",
          "stores": null,
          "id": "59ab996166d5cc0e0d164d75"
        },
        "storeId": "59ab996166d5cc0e0d164d76",
        "__v": 0
      }
    ],
    "id": "59ab996166d5cc0e0d164d76"
  },
  {
    "_id": "59ab996166d5cc0e0d164d77",
    "__v": 0,
    "name": "Teds",
    "items": [
      {
        "_id": "59ab996179e41cc54405b72d",
        "itemId": {
          "_id": "59ab996166d5cc0e0d164d74",
          "__v": 0,
          "name": "toothpaste",
          "stores": null,
          "id": "59ab996166d5cc0e0d164d74"
        },
        "storeId": "59ab996166d5cc0e0d164d77",
        "__v": 0
      }
    ],
    "id": "59ab996166d5cc0e0d164d77"
  }
]
Mongoose: items.find({}, { fields: {} })
Mongoose: storeitems.find({ itemId: { '$in': [ ObjectId("59ab996166d5cc0e0d164d74"), ObjectId("59ab996166d5cc0e0d164d75") ] } }, { fields: {} })
Mongoose: stores.find({ _id: { '$in': [ ObjectId("59ab996166d5cc0e0d164d76"), ObjectId("59ab996166d5cc0e0d164d77") ] } }, { fields: {} })
[
  {
    "_id": "59ab996166d5cc0e0d164d74",
    "__v": 0,
    "name": "toothpaste",
    "stores": [
      {
        "_id": "59ab996179e41cc54405b72b",
        "itemId": "59ab996166d5cc0e0d164d74",
        "storeId": {
          "_id": "59ab996166d5cc0e0d164d76",
          "__v": 0,
          "name": "Bills",
          "items": null,
          "id": "59ab996166d5cc0e0d164d76"
        },
        "__v": 0
      },
      {
        "_id": "59ab996179e41cc54405b72d",
        "itemId": "59ab996166d5cc0e0d164d74",
        "storeId": {
          "_id": "59ab996166d5cc0e0d164d77",
          "__v": 0,
          "name": "Teds",
          "items": null,
          "id": "59ab996166d5cc0e0d164d77"
        },
        "__v": 0
      }
    ],
    "id": "59ab996166d5cc0e0d164d74"
  },
  {
    "_id": "59ab996166d5cc0e0d164d75",
    "__v": 0,
    "name": "brush",
    "stores": [
      {
        "_id": "59ab996179e41cc54405b72f",
        "itemId": "59ab996166d5cc0e0d164d75",
        "storeId": {
          "_id": "59ab996166d5cc0e0d164d76",
          "__v": 0,
          "name": "Bills",
          "items": null,
          "id": "59ab996166d5cc0e0d164d76"
        },
        "__v": 0
      }
    ],
    "id": "59ab996166d5cc0e0d164d75"
  }
]

Da die Relationen nun in einer eigenen Sammlung abgebildet werden, gibt es hier ein paar Änderungen. Insbesondere möchten wir ein "virtuelles" Feld in der Sammlung definieren, das kein festes Array von Elementen mehr enthält. Also fügen Sie eine wie gezeigt hinzu:

const itemSchema = new Schema({
  name: String,
},{
 toJSON: { virtuals: true }
});

itemSchema.virtual('stores', {
  ref: 'StoreItem',
  localField: '_id',
  foreignField: 'itemId'
});

Sie weisen das virtuelle Feld mit seinem localField zu und foreignField Mappings also das nachfolgende .populate() call weiß, was zu verwenden ist.

Die Zwischensammlung hat eine ziemlich standardmäßige Definition:

const storeItemSchema = new Schema({
  storeId: { type: Schema.Types.ObjectId, ref: 'Store', required: true },
  itemId: { type: Schema.Types.ObjectId, ref: 'Item', required: true }
});

Und anstatt neue Elemente auf Arrays zu "pushen", fügen wir sie stattdessen dieser neuen Sammlung hinzu. Eine vernünftige Methode hierfür ist die Verwendung von "Upserts", um einen neuen Eintrag nur dann zu erstellen, wenn diese Kombination nicht vorhanden ist:

// Add toothpaste to both stores
for( let store of [billsStore,tedsStore] ) {
  await StoreItem.update(
    { storeId: store._id, itemId: toothpaste._id },
    { },
    { 'upsert': true }
  );
}

Es ist eine ziemlich einfache Methode, die lediglich ein neues Dokument mit den beiden Schlüsseln erstellt, die in der Abfrage angegeben wurden, wo keiner gefunden wurde, oder im Wesentlichen versucht, dasselbe Dokument zu aktualisieren, wenn es übereinstimmt, und in diesem Fall mit "nichts". Bestehende Übereinstimmungen enden also einfach als „No-Op“, was das Gewünschte ist. Alternativ könnten Sie einfach .insertOne() verwenden Fehler doppelter Schlüssel ignorieren. Was auch immer Ihnen gefällt.

Das eigentliche Abfragen dieser "verwandten" Daten funktioniert wieder etwas anders. Da es sich um eine andere Sammlung handelt, rufen wir .populate() auf in einer Weise, die berücksichtigt, dass die Beziehung auch in anderen abgerufenen Eigenschaften "nachgeschlagen" werden muss. Sie haben also Aufrufe wie diese:

 // Show stores
  let stores = await Store.find().populate({
    path: 'items',
    populate: { path: 'itemId' }
  });
  log(stores);

Listing 3 – Verwenden Sie moderne Funktionen, um dies auf dem Server zu tun

Je nachdem, welcher Ansatz verwendet wird, Arrays oder eine zwischengeschaltete Sammlung zum Speichern der Beziehungsdaten als Alternative zu "wachsenden Arrays" in den Dokumenten zu verwenden, sollten Sie offensichtlich beachten, dass .populate() Die verwendeten Aufrufe stellen tatsächlich zusätzliche Abfragen an MongoDB und ziehen diese Dokumente in separaten Anforderungen über das Netzwerk.

Dies mag in kleinen Dosen schön und gut erscheinen, aber wenn die Dinge skalieren und insbesondere bei Anfragen, ist dies nie eine gute Sache. Darüber hinaus gibt es möglicherweise andere Bedingungen, die Sie anwenden möchten, was bedeutet, dass Sie nicht alle Dokumente vom Server abrufen müssen und lieber Daten aus diesen "Beziehungen" abgleichen möchten, bevor Sie Ergebnisse zurückgeben.

Aus diesem Grund enthalten moderne MongoDB-Releases $lookup die eigentlich die Daten auf dem Server selbst "verbindet". Inzwischen sollten Sie sich alle Ausgaben angesehen haben, die diese API-Aufrufe erzeugen, wie in mongoose.set('debug',true) gezeigt .

Anstatt also mehrere Abfragen zu erstellen, erstellen wir dieses Mal eine Aggregationsanweisung, um auf dem Server "beizutreten" und die Ergebnisse in einer Anfrage zurückzugeben:

// Show Stores
let stores = await Store.aggregate([
  { '$lookup': {
    'from': StoreItem.collection.name,
    'let': { 'id': '$_id' },
    'pipeline': [
      { '$match': {
        '$expr': { '$eq': [ '$$id', '$storeId' ] }
      }},
      { '$lookup': {
        'from': Item.collection.name,
        'let': { 'itemId': '$itemId' },
        'pipeline': [
          { '$match': {
            '$expr': { '$eq': [ '$_id', '$$itemId' ] }
          }}
        ],
        'as': 'items'
      }},
      { '$unwind': '$items' },
      { '$replaceRoot': { 'newRoot': '$items' } }
    ],
    'as': 'items'
  }}
])
log(stores);

Was zwar länger in der Codierung ist, aber selbst für die sehr triviale Aktion hier weitaus effizienter ist. Dies skaliert natürlich erheblich.

Nach dem gleichen "Zwischenmodell" wie zuvor (und nur zum Beispiel, weil es auf beide Arten gemacht werden könnte) haben wir eine vollständige Liste:

const { Schema } = mongoose = require('mongoose');

const uri = 'mongodb://localhost:27017/manydemo',
      options = { useNewUrlParser: true };

mongoose.Promise = global.Promise;
mongoose.set('debug', true);
mongoose.set('useFindAndModify', false);
mongoose.set('useCreateIndex', true);

const itemSchema = new Schema({
  name: String
}, {
  toJSON: { virtuals: true }
});

itemSchema.virtual('stores', {
  ref: 'StoreItem',
  localField: '_id',
  foreignField: 'itemId'
});

const storeSchema = new Schema({
  name: String
}, {
  toJSON: { virtuals: true }
});

storeSchema.virtual('items', {
  ref: 'StoreItem',
  localField: '_id',
  foreignField: 'storeId'
});

const storeItemSchema = new Schema({
  storeId: { type: Schema.Types.ObjectId, ref: 'Store', required: true },
  itemId: { type: Schema.Types.ObjectId, ref: 'Item', required: true }
});

const Item = mongoose.model('Item', itemSchema);
const Store = mongoose.model('Store', storeSchema);
const StoreItem = mongoose.model('StoreItem', storeItemSchema);

const log = data => console.log(JSON.stringify(data, undefined, 2));

(async function() {

  try {

    const conn = await mongoose.connect(uri, options);

    // Clean data
    await Promise.all(
      Object.entries(conn.models).map(([k,m]) => m.deleteMany())
    );

    // Create some instances
    let [toothpaste, brush] = await Item.insertMany(
      ['toothpaste', 'brush'].map(name => ({ name }) )
    );
    let [billsStore, tedsStore] = await Store.insertMany(
      ['Bills', 'Teds'].map( name => ({ name }) )
    );

    // Add toothpaste to both stores
    for ( let { _id: storeId }  of [billsStore, tedsStore] ) {
      await StoreItem.updateOne(
        { storeId, itemId: toothpaste._id },
        { },
        { 'upsert': true }
      );
    }

    // Add brush to billsStore
    await StoreItem.updateOne(
      { storeId: billsStore._id, itemId: brush._id },
      { },
      { 'upsert': true }
    );

    // Show Stores
    let stores = await Store.aggregate([
      { '$lookup': {
        'from': StoreItem.collection.name,
        'let': { 'id': '$_id' },
        'pipeline': [
          { '$match': {
            '$expr': { '$eq': [ '$$id', '$storeId' ] }
          }},
          { '$lookup': {
            'from': Item.collection.name,
            'let': { 'itemId': '$itemId' },
            'pipeline': [
              { '$match': {
                '$expr': { '$eq': [ '$_id', '$$itemId' ] }
              }}
            ],
            'as': 'items'
          }},
          { '$unwind': '$items' },
          { '$replaceRoot': { 'newRoot': '$items' } }
        ],
        'as': 'items'
      }}
    ])

    log(stores);

    // Show Items
    let items = await Item.aggregate([
      { '$lookup': {
        'from': StoreItem.collection.name,
        'let': { 'id': '$_id' },
        'pipeline': [
          { '$match': {
            '$expr': { '$eq': [ '$$id', '$itemId' ] }
          }},
          { '$lookup': {
            'from': Store.collection.name,
            'let': { 'storeId': '$storeId' },
            'pipeline': [
              { '$match': {
                '$expr': { '$eq': [ '$_id', '$$storeId' ] }
              }}
            ],
            'as': 'stores',
          }},
          { '$unwind': '$stores' },
          { '$replaceRoot': { 'newRoot': '$stores' } }
        ],
        'as': 'stores'
      }}
    ]);

    log(items);


  } catch(e) {
    console.error(e);
  } finally {
    mongoose.disconnect();
  }

})()

Und die Ausgabe:

Mongoose: stores.aggregate([ { '$lookup': { from: 'storeitems', let: { id: '$_id' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$$id', '$storeId' ] } } }, { '$lookup': { from: 'items', let: { itemId: '$itemId' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$_id', '$$itemId' ] } } } ], as: 'items' } }, { '$unwind': '$items' }, { '$replaceRoot': { newRoot: '$items' } } ], as: 'items' } } ], {})
[
  {
    "_id": "5ca7210717dadc69652b37da",
    "name": "Bills",
    "__v": 0,
    "items": [
      {
        "_id": "5ca7210717dadc69652b37d8",
        "name": "toothpaste",
        "__v": 0
      },
      {
        "_id": "5ca7210717dadc69652b37d9",
        "name": "brush",
        "__v": 0
      }
    ]
  },
  {
    "_id": "5ca7210717dadc69652b37db",
    "name": "Teds",
    "__v": 0,
    "items": [
      {
        "_id": "5ca7210717dadc69652b37d8",
        "name": "toothpaste",
        "__v": 0
      }
    ]
  }
]
Mongoose: items.aggregate([ { '$lookup': { from: 'storeitems', let: { id: '$_id' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$$id', '$itemId' ] } } }, { '$lookup': { from: 'stores', let: { storeId: '$storeId' }, pipeline: [ { '$match': { '$expr': { '$eq': [ '$_id', '$$storeId' ] } } } ], as: 'stores' } }, { '$unwind': '$stores' }, { '$replaceRoot': { newRoot: '$stores' } } ], as: 'stores' } } ], {})
[
  {
    "_id": "5ca7210717dadc69652b37d8",
    "name": "toothpaste",
    "__v": 0,
    "stores": [
      {
        "_id": "5ca7210717dadc69652b37da",
        "name": "Bills",
        "__v": 0
      },
      {
        "_id": "5ca7210717dadc69652b37db",
        "name": "Teds",
        "__v": 0
      }
    ]
  },
  {
    "_id": "5ca7210717dadc69652b37d9",
    "name": "brush",
    "__v": 0,
    "stores": [
      {
        "_id": "5ca7210717dadc69652b37da",
        "name": "Bills",
        "__v": 0
      }
    ]
  }
]

Was offensichtlich sein sollte, ist die deutliche Verringerung der Abfragen, die am Ende ausgegeben werden, um die "verbundene" Form der Daten zurückzugeben. Dies bedeutet geringere Latenz und reaktionsschnellere Anwendungen, da der gesamte Netzwerk-Overhead entfernt wird.

Schlussbemerkungen

Dies sind im Allgemeinen Ihre Ansätze zum Umgang mit "Viele-zu-Viele"-Beziehungen, die im Wesentlichen auf eines der beiden hinauslaufen:

  • Halten von Arrays in jedem Dokument auf beiden Seiten, die die Verweise auf die zugehörigen Elemente enthalten.

  • Speichern einer Zwischensammlung und Verwenden dieser als Nachschlagereferenz zum Abrufen der anderen Daten.

In allen Fällen liegt es bei Ihnen um diese Referenzen tatsächlich zu speichern, wenn Sie erwarten, dass die Dinge in "beide Richtungen" funktionieren. Natürlich $lookup und sogar "virtuelle", wo dies zutrifft, bedeutet, dass Sie nicht immer auf jeder Quelle speichern müssen, da Sie dann an nur einer Stelle "referenzieren" und diese Informationen verwenden könnten, indem Sie diese Methoden anwenden.

Der andere Fall ist natürlich "Einbetten", was ein ganz anderes Spiel ist und worum es bei dokumentenorientierten Datenbanken wie MongoDB wirklich geht. Daher ist das Konzept, statt "aus einer anderen Sammlung zu holen", die Daten natürlich "einzubetten".

Damit ist nicht nur die ObjectId gemeint Werte, die auf die anderen Elemente verweisen, aber tatsächlich die vollständigen Daten in Arrays in jedem Dokument speichern. Es gibt natürlich ein Problem mit der "Größe" und natürlich Probleme mit der Aktualisierung von Daten an mehreren Stellen. Dies ist im Allgemeinen der Kompromiss für eine einzelne Anfrage und eine einfache Anfrage das muss nicht nach Daten in anderen Sammlungen suchen, weil es "bereits da" ist.

Es gibt viel Material zum Thema Referenzierung vs. Einbettung. Eine solche zusammenfassende Quelle ist Mongoose populate vs object nesting oder sogar die sehr allgemeinen MongoDB-Beziehungen:einbetten oder referenzieren? und viele viele andere.

Sie sollten einige Zeit damit verbringen, über die Konzepte nachzudenken und wie dies auf Ihre Anwendung im Allgemeinen zutrifft. Und beachten Sie, dass Sie hier nicht wirklich ein RDBMS verwenden, also können Sie genauso gut die richtigen Funktionen verwenden, die Sie ausnutzen sollen, anstatt einfach eins wie das andere zu machen.