Sie können die Dokumente auch an der Quelle aufteilen, indem Sie im Wesentlichen jeden Wert in ein Array von Einträgen nach „Typ“ für „in“ und „out“ kombinieren. Sie können dies einfach mit $map
tun
und $cond
um die Felder auszuwählen, dann $unwind
das Array und bestimmen Sie dann erneut, welches Feld „gezählt“ werden soll, indem Sie es mit
collection.aggregate([
{ "$project": {
"dates": {
"$filter": {
"input": {
"$map": {
"input": [ "in", "out" ],
"as": "type",
"in": {
"type": "$$type",
"date": {
"$cond": {
"if": { "$eq": [ "$$type", "in" ] },
"then": "$inDate",
"else": "$outDate"
}
}
}
}
},
"as": "dates",
"cond": { "$ne": [ "$$dates.date", null ] }
}
}
}},
{ "$unwind": "$dates" },
{ "$group": {
"_id": {
"year": { "$year": "$dates.date" },
"month": { "$month": "$dates.date" },
"day": { "$dayOfMonth": "$dates.date" }
},
"countIn": {
"$sum": {
"$cond": {
"if": { "$eq": [ "$dates.type", "in" ] },
"then": 1,
"else": 0
}
}
},
"countOut": {
"$sum": {
"$cond": {
"if": { "$eq": [ "$dates.type", "out" ] },
"then": 1,
"else": 0
}
}
}
}}
])
Dies ist eine sichere Methode, bei der Sie nicht riskieren, die BSON-Grenze zu überschreiten, unabhängig davon, welche Datengröße Sie senden.
Persönlich würde ich lieber als separate Prozesse laufen und die aggregierten Ergebnisse separat "kombinieren", aber das würde von der Umgebung abhängen, in der Sie laufen, was in der Frage nicht erwähnt wird.
Als Beispiel für eine "parallele" Ausführung können Sie Meteor irgendwo in diese Richtung strukturieren:
import { Meteor } from 'meteor/meteor';
import { Source } from '../imports/source';
import { Target } from '../imports/target';
Meteor.startup(async () => {
// code to run on server at startup
await Source.remove({});
await Target.remove({});
console.log('Removed');
Source.insert({
"_id" : "XBpNKbdGSgGfnC2MJ",
"po" : 72134185,
"machine" : 40940,
"location" : "02A01",
"inDate" : new Date("2017-07-19T06:10:13.059Z"),
"requestDate" : new Date("2017-07-19T06:17:04.901Z"),
"outDate" : new Date("2017-07-19T06:30:34Z")
});
console.log('Inserted');
await Promise.all(
["In","Out"].map( f => new Promise((resolve,reject) => {
let cursor = Source.rawCollection().aggregate([
{ "$match": { [`${f.toLowerCase()}Date`]: { "$exists": true } } },
{ "$group": {
"_id": {
"year": { "$year": `$${f.toLowerCase()}Date` },
"month": { "$month": `$${f.toLowerCase()}Date` },
"day": { "$dayOfYear": `$${f.toLowerCase()}Date` }
},
[`count${f}`]: { "$sum": 1 }
}}
]);
cursor.on('data', async (data) => {
cursor.pause();
data.date = data._id;
delete data._id;
await Target.upsert(
{ date: data.date },
{ "$set": data }
);
cursor.resume();
});
cursor.on('end', () => resolve('done'));
cursor.on('error', (err) => reject(err));
}))
);
console.log('Mapped');
let targets = await Target.find().fetch();
console.log(targets);
});
Was im Wesentlichen an die Zielsammlung ausgegeben wird, wie in Kommentaren wie erwähnt wurde:
{
"_id" : "XdPGMkY24AcvTnKq7",
"date" : {
"year" : 2017,
"month" : 7,
"day" : 200
},
"countIn" : 1,
"countOut" : 1
}